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Contact force distributions are calculated for a number of small piles of rigid disks. The smooth and
the rough disk cases are discussed. It is found that the distributions are (a) functions of the mode of con-
struction of the pile and (b) extremely sensitive to small changes or imperfections in the shape of indivi-
dual disks. The so called top down algorithm is shown to apply only to a very small subset of the permit-

ted physical contact force distributions.

PACS number(s): 46.10.+z, 01.55.+b

I. INTRODUCTION

The results of computer simulations for the packing of
rigid spheres under gravity in three dimensions and rigid
disks in two are of interest in a variety of areas—Iliquid
and glassy states and various granular systems [1-4].
Typically, the properties calculated from these simula-
tions have been geometrical in nature—density, average
number of contacts, radial distributions, and size distri-
butions of interstices. More recently there have been
some attempts to calculate the contact force distributions
in two-dimensional piles of blocks and disks [5-11].
These results have potentially important practical appli-
cations in the building and confinement of piles of granu-
lated materials. The theoretical modeling of force distri-
butions was stimulated by the rather surprising experi-
mental results of Smid and Novosad [12]. These authors
carried out normal and shear stress measurements in con-
ical piles of quartz sand and fertilizer. In each case they
found that across any horizontal plane the maximum
values of the normal and the shear stresses occurred at
points well away from the vertical axis through the apex.
Much of the theoretical effort has gone into an attempt to
understand the physical basis for this result. The case of
the equilibrium of piles of rigid, rough disks and blocks
under gravity have been simulated by Bagster and co-
workers, [5-8], and elastic, rough disks by Liffman,
Chan, and Hughes [9].

The analysis of the equilibrium contact force distribu-
tion in a pile of rigid disks is characterized by the prob-
lem of indeterminancy —there are more unknowns (reac-
tions), than physical conditions (disk equilibrium equa-
tions). Bagster and co-workers [5-8] have tackled this
problem by adopting the so called top down algorithm.
In this technique one solves the equilibrium conditions of
the disks in sequence from the top down. The indeter-
minancy problem is avoided by restricting the discussion
to structures with at most two support points per disk
and by assuming limiting friction at all contact points.

In this paper the contact force distribution in small
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piles of rigid disks in equilibrium under gravity is dis-
cussed. We describe two cases, (a) a symmetric pile of ten
smooth disks and (b) an asymmetric pile of eight rough
disks. We find that the presence of the degrees of free-
dom associated with the indeterminancy is related to the
physical fact that the contact force distribution depends
on how the pyramid was built. In other words, the prob-
lem of calculating the contact forces in a pile of disks is
determinate when the equilibrium conditions and the de-
tails of the building process are given. Our results also
show that (i) the contact force distribution is very sensi-
tive to small geometrical changes or imperfections in the
shapes of the disks and (ii) the top down approach is ap-
plicable only in a very small subset of possible cases.

We deal with the smooth, rigid disk case in Sec. IT and
the rough, rigid disk case in Sec. III. A brief summary
and discussion is given in Sec. IV.

II. SMOOTH DISKS

Consider a two-dimensional pyramid made up of ten
similar, smooth, rigid disks held in equilibrium under
gravity by one horizontal and two vertical supports, see
Fig. 1. The centers of the outermost disks lie on the sides
of an equilateral triangle. We label the disks a to j, the
disk-disk contacts O to 16, and the disk-support contacts
wl to w4, L and R, Fig. 1. Since the disks are assumed
to be smooth, each contact force acts inwardly along the
normal at the point of contact. We denote the magni-
tudes of the contact forces by R,, where a is the label of
the corresponding point of contact. Each disk is assumed
to be in equilibrium so that the appropriate contact and
gravitational forces add to zero. For example, in the case
of the disk b, the horizontal and vertical conditions for
equilibrium are

%(RZ—R?’_R())_RI:O ) (1)
%(R2+R3——R0)—w=0, @)

where w is the weight common to all the disks. For disk
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FIG. 1. The pyramid of ten, smooth, rigid disks. Each disk is
labeled a—j. The disk-disk contacts are labeled 0—16 and the
disk-support contacts labeled w1-w4, L and R.

g, the equilibrium conditions are

LRy+R,,—R, =0, 3)
V3
—2~R8—Rw1+w=O . 4)

The 10 disks generate 20 equilibrium conditions. There
are 24 contact forces. However, in the case of disk a, the
solution to the equilibrium condition gives unique con-
tact forces at 5 o’clock and 7 o’clock with a common
magnitude Ry=w /V'3. The remaining nine disks have
18 equilibrium conditions and 22 contact force magni-
tudes. Thus, the equilibrium state has four degrees of
freedom [13] and hence the equilibrium problem posed
above is insoluble as it stands. Additional assumptions or
conditions are required if one is to obtain a unique solu-
tion. In what follows we shall discuss some of the kinds
of assumptions we can make and the nature of the result-
ing equilibrium states.

Given 22 R, and 18 linear relations, we can choose
four parameters as independent variables and write the
equilibrium relations as linear inhomogeneous equations
for the dependent parameters in the form AV=W,
where A is an 18X 18 matrix, V is a vector whose com-
ponents are the 18 dependent variables, and W is a vector
whose components are linear combinations of the four in-
dependent variables. Not all choices of four independent
variables allow us to solve for V in terms of W. A case in
point is the set R;,R,,R;,R;. Here A4 has two rows of
zeroes and hence it is singular. In physical terms the ina-
bility to solve for this V stems from the fact that we are
attempting to prescribe three of the four forces acting on
b, when there are only two equilibrium conditions for this
disk, see (1) and (2). In the remainder of our discussion in
this section we shall treat R;,R4,R ,R; as independent
quantities. In this case A4 is nonsingular. Using the sym-
bolic mathematics program MAPLE, we obtained the fol-
lowing solution to the 18 equilibrium conditions.

R1='73"—R3 > (5)
R,=V3w—R,, (©6)
R,=R,, @)

Rs=V3w—R,, ®)
R¢= "/"3 R, , ©)
R;=R;y,—Ry—R;, (10)
R8=\5/—u_; Ro—R,, (11)
_ 2w
R11—73_R10+2R3 ’ (12)
R12=VL§~RIO+R9+R3 , (13)
4w
R13_‘/—§+R10_R9_2R3 > (14)
R14:RL—57“;+R9+R3 , (15)
_ Sw
RIS—RL_‘/—§+(2R9+R3—R10)/2 > (16)
_ 2w
R16_RL—T/—'§+(R9+2R3_R10)/2 > (17)
e
Rwlzgw——ziuzﬁm) , (18)
.
Rw2=w+T3(R9+R10) , (19)
.
Rw3:;w+73(R9—2R10+3R3) : (20)
e
Rw4=3w—TS(R9+2R3—R10) : @1
R =R, . (22)

As a check on these results, we note that the two hor-
izontal components of the applied forces balance [Eq.
(22)] and the horizontal plane exerts a vertical force
R, +R,,+R, 3;+R, ,=10w [Egs. (18)—-(21)] to support
the net weight of the 10 disks.

The independent quantities R;, Ry, Ry, R, span a
four-dimensional parameter space. Each point in this
space describes a solution to the 18 equilibrium condi-
tions and conversely, every equilibrium state is associated
with a point in the parameter space. Because we are
dealing with rigid disks, there is also the physical require-
ment

R,=0 foralla . (23)

As a result, not all parameter space points correspond to
physically realizable equilibrium states. While this condi-
tion [Eq. (23)] places a strong constraint on the number
of physically permitted states, it does not reduce this
number to unity, i.e., there is no unique equilibrium state
for this pyramid (see below). We note in passing that the
uniqueness theorems common in the physics literature
apply to systems where the forces of interaction are con-
servative. In the case of the pyramid of rigid disks, the
contact forces are not conservative and so the lack of
uniqueness is to be expected.
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We now show how, by building the pyramid in
different ways, we can generate different contact force
distributions.

(A) In the first case we start by setting the lowest four
disks g,h,i,j into the container. Next the three disks
d,e, f are placed on top of the bottom row. At this stage
the contact forces at the two contacts labeled 6 and 7 are
zero, R¢=R,=0 [see Fig. 2a]. The remaining three
disks a,b,c are assembled with a supported by b and c,
and zero contact force between b and ¢, R; =0. Finally,
this group is placed symmetrically on the row d,e,f.
This placement does not change the zero contact force
conditions

R,=R4=R,=0. (24)

The argument for this conclusion is straightforward; as
a,b,c are added to the pyramid, d,e do not exert a net
horizontal force on b; e, f do not exert a net horizontal
force on c; therefore, the contact force R; remains zero.
For R, we note that b,c do not exert a net horizontal
force on e, whereas b exerts a net horizontal force to the
left on d. Thus, the effect of b on d is to cause an increase
in Rg and leave a vanishing contact force at three o’clock
on d. A similar argument applies to the contact at nine
o’clock on f. The 3 conditions in Eq. (24) combined with

FIG. 2. Various arrangements of smooth, rigid disks (see the
text and Table 1.)

the 18 equilibrium conditions give an equilibrium state
described by 1 free parameter, namely, R;. Solving Egs.
(5)—(22) plus (24), we find the set of contact force magni-
tudes, which are shown in Table I under column 4. For
example,

Rs=2w/V3, Ris=R,—2w/V3, Ry=5w/2. (25

The size R; (=Rp) is determined by the forces exerted
by the vertical supports. This parameter affects only the
forces at the horizontal, colinear contact points, 14,15,16.
Because of the physical requirement R;s=>0, we must
have R; >2w/V'3, a fact indicated in the last row of
Table I.

(B) In this building process we construct the pyramid
symmetrically, leaving out the disk e, Fig. 2(b). This
structure is in equilibrium, with disks b and ¢ leaning in-
wards for support, i.e, R;70. Now we put e into the
pile. Since the upper disks a,b,c are already fully sup-
ported, it follows that the four contact forces
R;,R,,R¢, R, vanish. Since R;=R, [Eq. (7)], we get
three new conditions, namely,

R;=R,=R,=0. (26)

The solution to Egs. (5)-(22) plus (26) is shown in
column B in Table I. We note that the contact force dis-
tributions are quite different in these two cases, (A) and
(B); thus, the contact force distribution is a function of
how the pyramid was constructed, i.e., the distribution is
history dependent.

Consider yet another building process. Let us first of
all shave a small portion from disk e at 11 o’clock and
construct the pyramid following prescription (A), see Fig.
2(c). Then we have R¢=R,;=0, R;=0, and R;#0. The
latter two conditions arise because of the shaving of e.
This set of vanishing contact forces coincides with case
(B), see (26), and so the force distribution is described by
column B in Table I. From this example, we see that in
practical situations, the force distribution can be very
sensitive to small imperfections in the disks, which make
up the pyramid. We can think of this as geometrical
chaos.

(C) Consider the pyramid with disk 4 missing, Fig.
2(d). For this construction

However, combining (27) with (10), we conclude that
R,=—R,, in contradiction with the rigid disk property
[Eq. (23)]. To show why the structure in Fig. 2(d) is phys-
ically impossible, we start by constructing the semi-
pyramid shown in Fig. 2(e). Here disks a, ¢, and h are
missing. This structure is physically feasible; the corre-
sponding contact forces are shown in Table I under
column C: disks d and e are supported by the mutual
contact at 6. In this case we are not free to vary the pa-
rameter R;. It has the value V3w /2 determined by the
conditions for equilibrium.

Now add disk ¢ to the pyramid. Additional horizontal
and vertical force components are imposed on e. Disk d
cannot provide the needed compensating, horizontal in-
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crease in R¢ and so moves. Thus, there is no pyramidal
equilibrium. The mathematical equilibrium solution
compensates by introducing a negative or attractive con-
tact force R ,, a physically unacceptable result.

(D) Here we shave disk 4 at 11 o’clock and use it plus
nine other perfect disks to construct a pyramid following
the process described in (A) above. The presence of & al-
lows the possibility of a contact force R,,. This avoids
the difficulties seen in (C). The following conditions then
hold:

R,=R,=Ry4=0. (28)
The solution to (5)—(22) plus (28) is shown in Table I un-
der column D. We note that the tiny geometrical flaw in
h leads to (a) a significant asymmetry in the distribution
of the disk-disk interactions, see in particular the varia-
tion among the supporting forces, R,; to R, and (b) a
significant increase in the minimum allowed value of R; .
Just as in case (B), we can replace the shaved disk % in the
equilibrium pile with a perfectly round disk and leave the
equilibrium force distribution unchanged. Thus, column
D in Table I describes yet another force distribution in
the ten disk pyramid, Fig. 1.

What we have done in the previous paragraphs is show
that there are lines (A), (B), and (D) in the R;,R4,R o, R},
space, which describe physical equilibrium states of a py-
ramid of ten perfect disks. Clearly we can obtain addi-
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tional lines by setting other combinations of normal reac-
tions to zero. An exhaustive procedure will then produce
an ensemble of equilibrium states for this pile. See fur-
ther comments below.

III. ROUGH DISKS

Consider the pile in Fig. 3. Disks a and h are missing.
This is the arrangement that proved to have no physical
equilibrium state when the disks are smooth, Sec. II, (C).
We now show that physical equilibrium states can exist if
the disks are rough. There are 17 contact points in Fig. 3
and so 34 force components (17 normal and 17 frictional)
to be determined. There are 8 discs with 24 equilibrium
conditions (2 translational and 1 rotational per disk).
Hence, we have 10 degree of freedom. To reduce some of
the algebraic complexity, we shall assume that the disk-
support interaction is smooth. The number of degrees of
freedom then drops to five. The frictional force magni-
tudes are denoted by F, and the assumed directions are
indicated by arrows in Fig. 3. For clarity we do not show
the normal reaction forces in the figure. Since smooth
disk-support interactions are assumed, it follows immedi-
ately that Fg =0 and the rotational equilibrium condition
for g is satisfied identically. Thus, there remain 17 nor-
mal and 11 frictional reactions to be determined from 23
equilibrium conditions—again 5 degrees of freedom. As
we discussed in the smooth disk case, Sec. II, the degrees

TABLE 1. Values for the contact force magnitudes in the four cases, see text. A applies to arrange-
ments shown in Figs. 1 and 2(a). B applies to arrangements shown in Figs. 1, 2(b), and 2(c). C applies
to arrangements shown in Fig. 2(e). D applies to arrangements shown in Figs. 1 and 2(f). The entries
have been scaled. For the sections labeled with an asterisk, the scale factor is w /V'3 and for the section
with a dagger, the factor is w. No entry indicates the absence of a contact.
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FIG. 3. Pile of eight, rough, rigid disks. The arrows show
the directions assumed for the frictional forces. The normal
forces have been omitted for clarity. The disk-disk contact la-
bels are shown in Fig. 1.

of freedom are a manifestation of the ways in which one
can build the pile. For this pile we shall assume that it
has been built in such a fashion that the normal and fric-

tional forces at contact points 1 and 7 vanish, i.e.,
R,=F,=R,=F;=0. (29)

We can then solve for the remaining forces. Using MA-
PLE, we find

R,=0, F,=0, (30)
R2=R3=—2‘u/)—§+RL, F,=Fy=3w+V3R, , 31
- —_ ‘/3 3 — — 5 3‘/_
R4—R5—_‘2—w+7RL, F4_F5_—5‘w+'§‘ 3RL ’
(32)
__ 5 —3 V3
Re=- gw—Ry, Fe=3w—=V3R,, (33)
R,=0, F,=0, (34)
Rg=2R,, Fg=0, (35)
Rllz_g'\/gw_%RL’ F11=_%w+%‘/§RL ’ (36)
R12:Tl/%w_%RL’ F=—w+iV3R,, 37
13 3413
B=— 5 5w SRL, F=—jwtV3R,, (38)
R,6=%, Fig=—32w+V3R, , (39)
R, =w+V3R, , (40)
R,;=2w—3V3R, , (41)

R, =—3w+2V3R, ,
Rr=R_ . (43)

In contrast to the smooth disk results, Egs. (5)-(21), the
supporting force R; appears explicitly in the expressions
for most of the other R, .

A simple calculation shows that none of the normal re-

(42)

actions are negative for

(13/10)V3w <R, <(20/11)V3w , (44)

and at least one normal reaction is negative outside this
range. Therefore, the system has physical equilibrium
states only if the supporting force R; satisfies (44). We
note two further particular properties. At the lower
bound in (44), R;=0 and F 370, and at the upper
bound, R, =0 and F,70. Second, the frictional forces
F,=F,=F;=F,,=0 when R;=(V3/2)w, satisfying
(44), and F,=F;=0 when R; =5w /(3V/3), again satisfy-
ing (44). Thus, we have the following picture. As the
supporting force R; sweeps through the range (44), the
normal reactions and frictional forces adjust to satisfy the
equilibrium conditions. In particular some of the fric-
tional forces change direction during this process. We
emphasize that this adjustment to changes in the support-
ing force extends throughout the pile to the topmost
disks [Egs. (31) and (32)]. It is clear that, in general,
there is a feedback mechanism operating in the equilibri-
um conditions. The equilibrium forces on the lower disks
are affected by the presence of the upper disks and con-
versely the supporting forces on the upper disks depend
on the conditions extant in the lower rows.

The so called top down algorithm has been used to cal-
culate the force distribution in piles of rough, rigid disks,
[5-8]. In this method the equilibrium conditions are
solved sequentially from the top row down. That is to
say the equilibrium condition for each disk is solved us-
ing only the previously determined forces on the disks
above. Because the conditions in the disks below are ig-
nored, the problem is indeterminate. The impasse is bro-
ken by (a) restricting the discussion to the case of at most
two point support per disk and (b) assuming limiting fric-
tion, i.e., F, =pu,R,, at each contact point. In the pyram-
id case described above, the ratio F, /R, is a function of
R; at each disk-disk contact a. Thus, the static friction
coefficient needed at each contact point to make the top-
down approach valid varies with the applied force R,
and varies from contact to contact in the pile. Clearly
the topdown approach applies to a given set of rough
disks only under very special circumstances— particular
geometrical arrangements and particular, nonuniform
distributions of static coefficients. This means that most
physical equilibrium states of the pyramid are not de-
scribed by the top down approach.

IV. DISCUSSION

To summarize, we have obtained the contact force dis-
tributions in a number of different piles of rigid disks in
static equilibrium. From these results we find that (a) for
a given pile the equilibrium force distribution is not
unique but a function of how the pile was constructed, (b)
the force distribution depends very sensitively on small
geometrical changes in the shape of single disks, and (c)
the topdown algorithm can apply only to a very small
subset of the permissible equilibrium states for a pile of
disks.

The analysis described in earlier sections consists of
two steps: (i) finding the algebraic solution to a large
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number of equilibrium conditions and (ii) determining the
physically accessible region in parameter space. With the
ready availability and power of modern symbolic
mathematics programs such as MAPLE, the first step does
not pose a problem for moderate sized piles (“moderate”
is determined by the capacity of the computer to hand).
Given the algebraic solution from (i), one can then con-
duct a numerical sweep of parameter space to carry out
step (ii).

We conclude with a number of remarks on the possible
extension of this work. The physically accessible region
in parameter space provides an ensemble of possible
states of the pile. By averaging over these states, one can
introduce a canonical pile with contact force distribution
given by the ensemble averaged contact distribution. We
hope to report on canonical piles in a later paper.

It is clear that as the pile increases in size, the algebraic
and numerical complexity increases. However, if a ther-
modynamic limit theorem [14] applies to these hard disk
systems, there is a limit to the increase in complexity. If
a thermodynamic limit theorem were to hold for a pile of
disks, answers to two questions are of particular interest.

(a) What properties are independent of size? (b) How
large must the system be to reach this limit? In the ac-
companying paper [15] we describe the properties of an
elastic pyramid. We find that the strain fields (normal-
ized to the maximum strains), regarded as a function of
position coordinates (normalized to the dimensions of the
pile), are independent of size to better than 1 part in 100
for pyramids with 100 or more layers. Based on these re-
sults, we might expect in the rigid disk case that the en-
semble averaged stress fields (normalized to the max-
imum stress) regarded as functions of position coordi-
nates (normalized to the dimensions of the pile) would be
independent of size in sufficiently large piles. Again ex-
trapolating from the elastic pile case, one might also hope
that this thermodynamic limit would be detectable in
piles with fewer than 100 layers.
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